Trigonometry
Study Guide 12
Due Date: $\qquad$

Name: $\qquad$

## Class:

Score:

No Work $\Leftrightarrow$ No Points
Use Pencil Only $\Leftrightarrow$ Be Neat \& Organized

1. (2 points) Find the area of the triangle $A B C$ with $b=8.5 \mathrm{~cm}, c=8.5 \mathrm{~cm}$, and $\angle A=100^{\circ}$.
2. $\qquad$
3. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle B=100^{\circ}, \angle C=45^{\circ}$, and $c=6.5 \mathrm{ft}$.
4. 
5. (2 points) Find the area of the triangle $A B C$ with $a=5 \mathrm{ft}, b=12 \mathrm{ft}$, and $\angle C=125^{\circ}$.
6. 
7. (3 points) Find the area of the triangle $A B C$ with $a=8 \mathrm{ft}, b=12 \mathrm{ft}$, and $c=18$ by using the Heron's formula
8. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle A=35^{\circ}, a=5$, and $b=8 \mathrm{ft}$.
9. 
10. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle B=25^{\circ}, a=6$, and $c=10 \mathrm{ft}$.
11. 
12. (5 points) From a point at ground level, the angle of elevation to the top of the mountain was $32^{\circ}$, and if you get two kilometers further back from the mountain, the angle of elevation becomes $10^{\circ}$. Use this information to find the height of the mountain. Detailed drawing required.
13. (5 points) Observers in two towns on the same side of a mountain have angle of elevation $50^{\circ}$ and $25^{\circ}$. Find the horizontal distance between the cities if the height of the mountain is 8500 ft . Detailed drawing required.
14. $\qquad$
15. (5 points) A surveyor wishes to find the distance between two inaccessible points $A$ and $B$ on opposite sides of a lake. While standing at point $C$, she finds that $b=259 \mathrm{~m}$ and $a=423 \mathrm{~m}$, and the angle $A C B$ measures $132^{\circ} 40^{\prime}$. Find the distance between $A$ and $B$ to the nearest meters. Detailed drawing required.
16. 
17. A boy is rotating a stone in a 5 - ft long sling at the rate of $\mathbf{2 5}$ revolutions every 10 seconds.
(a) (2 points) Find the exact value of its angular speed $\omega$ in rad/minute by using $\omega=\frac{\theta}{t}$.
(a)
(b) (2 points) Find the exact value of its linear speed $v$ in $\mathrm{ft} /$ minute by using $v=r \omega$.
(b)
18. Given $\sin x=\frac{4}{5}, \cos y=-\frac{7}{25}, x$ is in quadrant II, and $y$ is in quadrant III. (a) (3 points) Draw two different right triangle and clearly label them.
(b) (3 points) Find the exact value of $\cos \frac{x}{2}$.
(b) $\qquad$
(c) (3 points) Find the exact value of $\sin (x-y)$.
(c)
(d) (3 points) Find the exact value of $\tan (x+y)$.
(d)
