Trigonometry	Name:
Study Guide 12	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (2 points) Find the area of the triangle ABC with b = 8.5 cm, c = 8.5 cm, and $\angle A = 100^{\circ}$.

1. _____

2. (4 points) Find the remaining parts of the triangle ABC with $\angle B = 100^{\circ}$, $\angle C = 45^{\circ}$, and c = 6.5 ft.

2. ____

3. (2 points) Find the area of the triangle ABC with a = 5 ft, b = 12 ft, and $\angle C = 125^{\circ}$.

3. ____

4. (3 points) Find the area of the triangle ABC with a = 8 ft, b = 12 ft, and c = 18 by using the Heron's formula

4. _____

5. (4 points) Find the remaining parts of the triangle ABC with $\angle A = 35^{\circ}$, a = 5, and b = 8 ft.

5. _____

6. (4 points) Find the remaining parts of the triangle ABC with $\angle B = 25^{\circ}$, a = 6, and c = 10 ft.

6. _

7. (5 points) From a point at ground level, the angle of elevation to the top of the mountain was 32° , and if you get two kilometers further back from the mountain, the angle of elevation becomes 10° . Use this information to find the height of the mountain. Detailed drawing required.

7. _____

8. (5 points) Observers in two towns on the same side of a mountain have angle of elevation 50° and 25° . Find the horizontal distance between the cities if the height of the mountain is 8500 ft. Detailed drawing required.

9. (5 points) A surveyor wishes to find the distance between two inaccessible points A and B on opposite sides of a lake. While standing at point C, she finds that b = 259 m and a = 423 m, and the angle ACB measures $132^{\circ}40'$. Find the distance between A and B to the nearest meters. Detailed drawing required.

9. _____

- 10. A boy is rotating a stone in a 5-ft long sling at the rate of 25 revolutions every 10 seconds.
 - (a) (2 points) Find the exact value of its angular speed ω in rad/minute by using $\omega = \frac{\theta}{t}$.

(a) _____

(b) (2 points) Find the exact value of its linear speed v in ft/minute by using $v = r\omega$.

(b) _____

11. Given $\sin x = \frac{4}{5}$, $\cos y = -\frac{7}{25}$, x is in quadrant II, and y is in quadrant III. (a) (3 points) Draw two different right triangle and clearly label them.

(b) (3 points) Find the exact value of $\cos \frac{x}{2}$.

(c) (3 points) Find the exact value of $\sin(x-y)$.

(c) _____

(b) _____

(d) (3 points) Find the exact value of tan(x+y).

(d) _____